執筆者ご紹介

今回
ワタシが執筆いたします！

2008年中外炉工業入社
米どころ、酒どころの新潟生まれ。
2児の父です。

技術解説

「リジェネレーティブパランシステム（全3回）」
〈第2回〉リジェネレーティブパランシステムにおける
低NOx（窒素酸化物）化燃焼技術

工業炉に大きな省エネルギー効果をもたらす技術の代表的なものとして、「リジェネレーティブパランシステム」（以下「リジェネパランシステム」と称します）が挙げられます。中外労働者ニュースでは先月号より3回にわたったりジェネパランシステムを題材に、今回ではその低NOx化燃焼技術についてご紹介します。

NOxとは

NOxとはNO、NO₂、N₂Oなどの窒素酸化物の総称で、一般的には天然ガスやガソリン、石炭などの化石燃料の燃焼に伴い発生します。工業炉は自動車と並びNOxの代表的な発生源となっています。NOxは光化学スモッグの原因になるため大気中の排出濃度が法律により規制されており、近年では、国内外ともに排出規制が厳しくなっています。NOxはその生成過程から2種類に大別できます。

サマルNOx
燃焼空気中の窒素が高温酸化されることで発生するNOxです。従ってサマルNOxは、高温で酸素濃度が高い条件ほど多く生成され、その低減には急激な火炎温度上昇を抑え（緩慢燃焼）、燃焼領域の酸素濃度を下げる（空気比を下げる）ことが有効です。工業炉から排出されるNOxの大半はこのサマルNOxと言われています。

フューエルNOx
燃料に含まれる窒素化合物が燃焼中に酸化されることで発生するNOxです。この窒素化合物は天然ガスには含まれていないが、重油や石炭に含まれています。フューエルNOxの低減には、窒素化合物を含まない（もしくは少ない）燃料への転換が最も有効ですが、燃焼領域の酸素濃度を下げる（空気比を下げる）ことも有効です。
リジェネバーナシステムの低NOx化燃焼技術

弊社が英国HOTWORK社から技術導入した初期のリジェネバーナシステムはNOxが500ppm（11%O2換算値）を超えるレベルであり、日本でリジェネバーナシステムを普及させるにはNOxを国内排出基準値以下に抑える必要がありました。以下に弊社のリジェネバーナシステムで採用している2種類の低NOx化燃焼技術について説明します。

二段燃焼技術

特徴
- 従来バーナにおいて多数の実績がある技術を採用
- 火炎形状が安定している
- 燃料ノズルの積極的冷却が必要
- 低NOx効果は後述の拡散燃焼技術より劣る

構造（弊社形式：RCB-FH型）
- バーナ中心部に燃料ノズルを配置
- 燃料ノズル近傍に1次空気ノズルを配置
- 1次空気ノズルの外側に2次空気ノズルを配置

低NOx原理
- 燃料と1次空気はバーナ内の燃焼室（1次燃焼領域）において、空気不足の状態で1次燃焼を開始
- その後、未燃の燃料と2次空気がバーナ近傍の炉内（2次燃焼領域）で2次燃焼を開始
- このように燃焼領域を2段階に分けることで燃焼を緩慢に進行し、その結果火炎温度の急激な上昇が抑制されてNOxが低減される

拡散燃焼技術

この技術は、主燃料と燃焼空気が炉内に直接噴射して、それぞれが炉内で拡散しつつ燃焼が進行することで急激な火炎温度上昇を抑制しNOxを低減する技術です。拡散燃焼技術の特徴、バーナ構造、低NOx原理を示します。

特徴
- 二段燃焼技術より低NOx効果が優れている
- 燃焼領域により炉内温度分布均一化が容易
- 低燃温時（800℃以下）には補助燃料が必要

構造（弊社形式：RCB-FD型）
- バーナ中心部に燃焼空気ノズルを配置
- 主燃料を炉内で直接噴射する構造
- 主燃料と燃焼空気が炉内で拡散しながら燃焼する構造

低NOx原理
- 主燃料と燃焼空気が炉内で拡散する際に、それぞれが大量の炉内排ガス（低酸素濃度）を巻き込み希釈される
- その結果、炉内燃料濃度と燃焼空気中酸素濃度が希薄になり、急激な火炎温度上昇が抑制されNOxが低減
- NOx特性を比較すると二段燃焼方式（RCB-FH型）では95ppm（11%O2換算）、拡散燃焼方式（RCB-FD型）では40ppm（11%O2換算）であり、拡散燃焼方式を採用することでNOxを半減させることができる。（詳しくは弊社バーナカタログをご確認下さい。）

以上、今回はリジェネバーナシステムの第2回として、低NOx化燃焼技術について説明しました。次号は弊社リジェネバーナのラインナップご紹介です。ご期待下さい。